Low-Temperature Reactions of Atomic Cobalt with CH_2N_2 . CH_4 , CH_3D , CH_2D_2 , CHD_3 , CD_4 , H_2 , D_2 , and HD

W. E. Billups,* Sou-Chan Chang, Robert H. Hauge, and John L. Margrave

Contribution from the Department of Chemistry, Rice University, Houston, Texas 77251 Received August 15, 1994[®]

Abstract: Cobalt atoms react spontaneously with diazomethane in solid argon at 12 K to yield CoCH₂, N₂CoCH₂, and at least two (N₂)₂CoCH₂ complexes. CH₃CoH is formed when dihydrogen is cocondensed as a ternary reagent. Photolysis of CH₃CoH ($\lambda \ge 400$ nm) gives the σ -complex Co(CH₄) as a spectroscopically detectable species. Photolysis of this complex using an ultraviolet source regenerates CH₃CoH. The σ -complex has the triply degenerate v4(f2) absorption of methane at 1305.3 cm⁻¹ split into two peaks, suggesting C_{3v} symmetry. Studies using isotopically labeled methane show that these σ -complexes do not have rigid structures. UV photolysis of a Co/H₂/Ar matrix at 12-15 K gives CoH₂. Co(H₂) complexes could not be detected. Photolysis of Co/D₂/Ar and Co/DH/Ar matrices gave CoD₂ and CoHD, respectively.

Introduction

The activation of alkanes by transition metal complexes is an area of considerable current interest.¹ Evidence has been presented which suggests that two-electron three-center M-H-C bonds² may play an important role in those reactions where the C-H bonds of coordinated ligands are activated at a metal center.³⁻⁵ There is considerably less information on the coordination of free hydrocarbon C-H bonds to organometallic species. The most direct evidence for alkane complexes came from the early work of Perutz and Turner⁶ on M(CO)₅ fragments bound to alkanes in low-temperature matrices. Alkane complexes have also been proposed on the basis of isotope labeling studies in the reductive elimination of alkyl hydride complexes in solution.⁷⁻⁹ More recently, transient organometallic σ -complexes of alkanes have been detected in the gas phase.¹⁰ We have reported the direct observation of a Co(CH₄) σ -complex by FTIR matrix isolation spectroscopy in solid argon.¹¹ A salient feature of this work was the discovery of a route to a

(6) Peruz, R. N.; Turner, J. J. *J. Am. Chem. Soc.* **1975**, *97*, 4791. (7) Bullock, R. M.; Headford, C. E. L.; Kegley, S. E.; Norton, J. R. J. Am. Chem. Soc. 1985, 107, 727

(8) Periana, R. A.; Bergman, R. G. J. Am. Chem. Soc. 1986, 108, 7332. (9) Gould, G. L.; Heinekey, D. M. J. Am. Chem. Soc. 1989, 111, 5502. (10) Wasserman, E. P.; Moore, C. B.; Bergman, R. G. Science 1992, 255, 315; Chem Eng. News 1992 (Jan 27) 32,33. See also: Schröder, D.; Fiedler, A.; Hrusak, J.; Schwarz, H. J. Am. Chem. Soc. 1992, 114, 1215. matrix environment in which a cobalt atom could be isolated with methane in an argon cage. In this way the dominance of free methane, which would otherwise mask the spectrum of the metal methane complex in the infrared spectrum, can be overcome. In this paper, we report the results of a more detailed study of these complexes.

Experimental Section

A description of the multisurface matrix isolation apparatus has been reported previously.¹² Cobalt atoms were generated by vaporizing cobalt (Fisher, 99.5%) from an alumina crucible enclosed in a resistively heated tantalum furnace over the range 1300-1500 °C. Argon (99.9995%) and dinitrogen (99.9995%) were obtained from Matheson Chemical Co. Hydrogenation studies were carried out by introducing dihydrogen (Air Products, 99.99%) or dideuterium (Air Products, 99.99%) into the matrix during deposition (H₂ or D₂/Ar \approx 1.5-5/100). Matrices were usually irradiated subsequent to deposition by exposure to a focused 100-W medium-pressure short arc Hg lamp. A water filter with various Corning long-pass cutoff filters and a band filter, 280-360 nm (UV), were used for wavelength dependent photolysis studies. The syntheses of CH₂N₂, CD₂N₂, CHDN₂, and ¹³CH₂N₂ were reported earlier.13

Results and Discussion

Reactions of Cobalt Atoms with CH₂N₂ in Solid Argon. CoCH₂ and N₂CoCH₂ were the major species^{14,16-18} formed when cobalt atoms were cocondensed with diazomethane and argon onto a rhodium-plated copper surface over a period of approximately 30 min at 12 K. At least two other complexes ligated by N₂ were also formed in low yield.¹⁹

(11) Billups, W. E.; Chang, S.-C.; Hauge, R. H.; Margrave, J. L. J. Am. Chem. Soc. 1993, 115, 2039.

J. L. J. Am. Chem. Soc. 1987, 109, 4508.

(14) Since the synthesis of the first transition metal carbene complex by Fischer and Maasböl in 1964,¹⁵ these versatile compounds have been recognized as important intermediates in both homogeneous and heterogeneous catalysis and have found wide application in organic synthesis. Surprisingly, metal complexes of the simplest carbene, CH2, has been found in only a few cases

(15) Fischer, E. O.; Maasböl, A. Angew. Chem. 1964, 76, 645; Angew, Chem., Int. Ed. Engl. 1964, 3, 580.

(16) Fischer, H. In The Chemistry of the Metal-Carbon Bond; Hartley,

F. R., Patai, S., Eds.; John Wiley: Chichester, U.K., 1982; pp 181-231. (17) Transition Metal Carbene Complexes; Verlag Chemie: Weinheim, 1983.

[®] Abstract published in Advance ACS Abstracts, December 1, 1994. (1) For reviews see: Bergman, R. G. Science, 1984, 223, 902. Halpern,

J. Inorg. Chem. Acta 1985, 100, 41. Green, M. L. H.; O'Hare, D. Pure Appl. Chem. 1985, 57, 1897. Crabtree, R. H. Chem. Rev. 1985, 85, 245. (2) Brookhart, M.; Green, M. L. H. J. Organomet. Chem. 1983, 250,

^{395.} Timmers, F.; Brookhart, M. Organometallics 1985, 4, 1365. Calvert, R. B.; Shapley, J. R. J. Am. Chem. Soc. 1978, 100, 7726.

⁽³⁾ Crabtree, R. H.; Holt, E. M.; Lavin, M.; Morehouse, S. M. Inorg. Chem. 1985, 24, 1986.

⁽⁴⁾ Chamberlain, L. R.; Rothwell, I. P.; Huffman, J. C. J. Am. Chem. Soc. 1986, 108, 1502. Buchanan, J. M.; Stryker, J. M.; Bergman, R. G. J. Am. Chem. Soc. 1986, 108, 1537. Stoutland, P. O.; Bergman, R. G. J. Am. Chem. Soc. 1985, 107, 4581. Thompson, M. E.; Bercaw, J. E. Pure Appl. Chem. 1984, 56, 1. Jones, W. D.; Feher, F. J. J. Am. Chem. Soc. 1984, 106, 1650; 1985, 107, 620. Hoyano, J. K.; Graham, W. A. G. J. Am. Chem. No. 108, 106, 1650; 1985, 107, 620. Soc. 1982, 104, 3722. Hoyano, J. K.; McMaster, A. D.; Graham, W. A. G. Ibid. 1983, 105, 7190. Graham, W. A. G. J. Organomet. Chem. 1986, 300, 81. Baudry, D.; Ephritikhine, M.; Felkin, H.; Zakrzewski, J. J. Organomet. Chem. 1984, 272, 391. Park, J. W.; Mackenzie, P. B.; Schaefer, W. P.; Grubbs, R. H. J. Am. Chem. Soc. 1986, 108, 6402.

⁽⁵⁾ Koga, N.; Obara, S.; Kitaura, K.; Morokuma, K. J. Am. Chem. Soc. 1985, 107, 7109. Fitzpatrick, N. J.; McGinn, M. A. J. Chem. Soc., Dalton Trans. 1985, 1637.

⁽¹²⁾ For a description of the apparatus, see: Hauge, R. H.; Fredin, L.; Kafafi, Z. H.; Margrave, J. L. Appl. Spectrosc. 1986, 40, 588.
(13) Chang, S.-C.; Kafafi, Z. H.; Hauge, R. H.; Billups, W. E.; Margrave,

Figure 1. A cobalt concentration study. Molar ratio of $CH_2N_2/Ar \approx 0.9/100$. CO (CO/Ar $\approx 0.01/100$) added to form Co(CO)₃ as an internal standard: (a) CoCH₂, (b) N₂CoCH₂, (e) Co(CO)₃, (f) CH₄.

The stoichiometry of the reaction leading to CoCH₂ was established from a cobalt concentration study in which the Co/ Ar molar ratio was increased gradually from 0.0 to 1.4 (Figure 1). An internal standard was formed by the addition of a small amount of CO, molar ratio of CO/Ar $\approx 0.01\%$. This gave bands at 1990.7 and 1953.3 cm⁻¹ arising from Co(CO)₃ and CoCO, respectively. A log-log plot²⁰ (Figure 2) of the intensity of the stronger band at 1990.7 cm⁻¹ versus one at 655.4 cm⁻¹ (Co-C stretching frequency assigned to CoCH₂) gave a slope of 0.93 confirming that the major product absorptions (a bands in Figure 1) arise from a species containing only one cobalt atom. Since these absorptions were found in regions characteristic of other MCH₂ species, they were assigned to CoCH₂. The bands labeled b were assigned to N₂CoCH₂.

Studies using ¹³CH₂N₂, CHDN₂, and CD₂N₂ were carried out to identify the absorptions assigned to CoCH₂. The spectrum of CoCH₂ and the spectra of the isotopically labeled species Co¹³CH₂, CoCHD, and CoCD₂ are presented in Figure 3. The observed frequencies were in good agreement with those calculated from a normal coordinate analysis. Both sets of frequencies are shown in Table 1 and the symmetry coordinates and force constants used for the calculations are listed in Table 2.

Two minor $(N_2)_x$ CoCH₂ species are associated with the weaker absorptions labeled c and d (Figure 4). These bands as well as those assigned to N₂CoCH₂ could be enhanced (and thus identified) when N₂ was cocondensed with Co, CH₂N₂,

(19) For earlier work using other metals, see: Chang, S.-C.; Hauge, R. H.; Kafafi, Z. H.; Margrave, J. L.; Billups, W. E. Chem. Commun. 1987, 1682. Chang, S.-C.; Hauge, R. H.; Kafafi, Z. H.; Margrave, J. L.; Billups, W. E. J. Am. Chem. Soc. 1988, 110, 7975. Chang, S.-C.; Hauge, R. H.; Kafafi, Z. H.; Margrave, J. L.; Billups, W. E. Inorg. Chem. 1990, 29, 4373. Billups, W. E.; Chang, S.-C.; Hauge, R. H.; Margrave, J. L. Inorg. Chem. 1993, 32, 1529. See also ref 13.

(20) Moskovits, M.; Ozin, G. A. Cryochemistry; Wiley-Interscience: New York, 1976.

Figure 2. A plot of log Ax versus log A $[Co(CO)_3, 1990.7 \text{ cm}^{-1}]$. Ax represents the absorbance measured at peak height (mm) of the 655.4 cm⁻¹ peak assigned to CoCH₂.

Figure 3. An isotope study. Partial FTIR spectra recorded in argon matrices of (A) $CoCH_2$, (B) $Co^{13}CH_2$, and (C) CoCHD and $CoCD_2$.

and argon. This effect is illustrated in the figure where the 500– 800 cm⁻¹ region of spectrum A is compared with one (spectrum B) which was recorded after N₂ had been introduced. The c bands decreased during $\lambda \ge 500$ nm, $\lambda \ge 400$ nm, and UV photolysis, whereas the d bands showed significant bleaching by $\lambda \ge 500$ nm photolysis. No products could be identified from these photolyses. The N₂CoCH₂ complex could be photodissociated using either a visible or UV source as shown by an increase in the absorptions assigned to CoCH₂ with a concomitant decrease in the bands assigned to N₂CoCH₂.

$$N_2CoCH_2 \xrightarrow{\lambda > 400 \text{ nm}} CoCH_2 + N_2$$

Although labeling experiments to establish the mode of bonding in the N₂ complexes have not been carried out, it is tempting to postulate that the N₂ is bound "side-on" since the N=N stretching band of N₂CoCH₂ at 2109.5 cm⁻¹ is very close to the one reported for CoN₂ at 2101.0 cm⁻¹, a species which is known to have the N₂ ligated in the less common "side-on" mode.²¹

Cobalt atoms were also found to react spontaneously with CH_2N_2 in N_2 matrices to yield $(N_2)_xCoCH_2$ complexes. The spectrum of a N_2 matrix is presented in Figure 5 along with the spectrum of CoCH₂ which was recorded in argon. Competing reactions between Co atoms and N_2 obscured the N=N

⁽¹⁸⁾ For reviews and other accounts, see: Cardin, D. J.; Cetinkaya, B.; Lappert, M. F. Chem. Rev. 1972, 72, 545. Cotton, F. A.; Lukehart, C. M. Prog. Inorg. Chem. 1972, 16, 487. Casey, C. P. In Transition Metal Organometallics in Organic Synthesis; Alper, H., Ed.; Academic Press: New York, 1976; Vol. 1, pp 189-233. Brown, F. J. Prog. Inorg. Chem. 1980, 27, 1. Dötz, K. H. Carbene Complexes of Groups VIa, VIIa and VIIIa. In Reactions of Coordinated Ligands; Braterman, P. S., Ed.; Plenum Press: London, 1986. Fischer, E. O. Pure Appl. Chem. 1970, 24, 407. Fischer, E. O. Pure Appl. Chem. 1972, 30, 353. Kreiter, C. G.; Fischer, E. O. In XXIII International Congress of Pure and Applied Chemistry; Butterworths: London, 1971; pp 151-168. Fischer, E. O. Schubert, U.; Fischer, H. Pure Appl. Chem. 1978, 50, 857. Fischer, E. O. Angew. Chem. 1974, 86, 651. Fischer, E. O. Adv. Organomet. Chem. 1976, 14, 1. Lappert, M. F. J. Organomet. Chem. 1975, 100, 139. Casey, C. P. In Reactive Intermediates; Jones, M., Jr., Moss, R. A., Eds.; John Wiley: New York, 1981; Vol. 2, pp 135-174. Fischer, E. O.; Fischer, H. In Inorganic Reactions and Methods; Zuckerman, J. J., Ed.; Verlag Chemie: Weinheim, 1986. Schrock, R. R. Acc. Chem. Res. 1979, 12, 98.

⁽²¹⁾ Ozin, G. A.; Voet, A. V. Can. J. Chem. 1973, 51, 637.

Table 1. Measured and Calculated Infrared Frequencies (cm⁻¹) for CoCH₂, Co¹³CH₂, CoCHD, and CoCD₂ in Solid Argon

	Co	CH ₂	Cola	³ CH ₂	CoC	CHD	Co	CD ₂
vibrational mode	obs	cal	obs	cal	obs	cal	obs	cal
CH ₂ s-stretch	2918.0	2918.3	2912.7	2912.5		2160.8		2120.6
CH ₂ scissor	1327.0	1326.0	1316.9	1320.3	1186.5	1181.2	993.2	996.5
CoC stretch	655.4	655.5	638.1	638.0	646.0	645.0	608.2	608.9
CH ₂ a-stretch	2979.7	2979.5	2969.1	2969.4	2948.4	2948.3		2199.1
CH ₂ rock	587.5	590.2	483.6	486.7	494.4	491.5	455.4	448.1
CH ₂ wag	757.4	758.4	749.9	751.9	681.5	681.2	599.5	593.9

Figure 4. N_2 complexes of CoCH₂: (A) Co/CH₂N₂/Ar = 1.0/0.9/100, (B) Co/CH₂N₂/N₂/Ar = 1.0/0.9/?/100; (a) CoCH₂, (b) N₂CoCH₂, (c and d) (N₂)_xCoCH₂.

Figure 5. Partial FTIR spectra of $CoCH_2$ and $(N_2)_xCoCH_2$: (A), $CoCH_2$ in solid argon, (B) $(N_2)_xCoCH_2$ in a nitrogen matrix.

stretching absorptions of these complexes and the degree of coordination of N_2 could not be evaluated. The infrared frequencies exhibited by the various nitrogen coordinated complexes are presented in Table 3.

A particularly salient feature of this work was the discovery of a route to a matrix environment in which a cobalt atom can

Fable 3.	Measured Ir	ifrared Freq	uencies (cm ⁻	1) of Nitro	gen
Coordinate	d Cobalt Me	thylenes in	Solid Argon	and Solid	Nitrogen ^a

vibration					
mode		$(N_2)_x CoCH_2$	$(N_2)_x Co^{13} CH_2$	(N ₂) _x CoCHD	$(N_2)_x CoCD_2$
CH ₂ s-stretch	В	2916.0	2908.0		
	С	2907.2	2900.0		
	Ν	2877.8	2872.9		
CH ₂ bend	Ν	1353.8	1347.3		
					593.7
Co=C stretch	В	636.6	620.5	625.0	597.1
	Ν	640.7	628.2		
CH ₂ a-stretch	Ν	2940.0	2930.1	2890.5	
CH ₂ rock	В	544.6	540.5	453.0	411.0
	С	668.5	664.0		
	D	598.9	593.2		
	Ν	515.6	511.5	420.9	
CH ₂ wag	В	770.7	764.2		
		779.6	772.6		
	С	785.9	778.1		
	D	683.4	668.2		
		695.0	688.9		
	Ν	815.5			636.9
N=N stretch	В	2109.5	2109.5	2109.5	2109.5

^a B = N₂CoCH₂; C, D = (N₂)_xCoCH₂ ("c" and "d" bands) isolated in argon matrices. $N = (N_2)_x$ CoCH₂ isolated in nitrogen matrices.

Scheme 1

$$Co + CH_2N_2 \xrightarrow{Ar/12 K} CoCH_2 \xrightarrow{H_2} CH_3CoH + CH_4 + Co$$

be isolated in an argon cage with a single molecule of methane. Thus the ternary reaction illustrated in Scheme 1 was shown to proceed spontaneously when H₂ was cocondensed with cobalt atoms, diazomethane, and argon at 12 K. A competing hydrogenolysis reaction gave methane.²²

Photolysis of the matrix using visible light ($\lambda \ge 400$ nm) led to the reductive elimination of cobalt from CH₃CoH to yield a Co(CH₄) σ -complex.²³ CH₃CoH could be regenerated after UV photolysis.²⁴ The Co(CH₄) adduct formed during this process had the triply degenerate ν 4(f2) absorption of methane at 1305.3 cm⁻¹ split into two peaks at 1303.4 cm⁻¹ and 1299.3 cm⁻¹. The formation of two peaks implies that the σ -complex is a $C_{3\nu}$ species.²⁵

$$CH_{3}CoH \xrightarrow{\lambda > 400 \text{ nm}} Co(CH_{4})$$

These events are illustrated in the infrared spectra presented in Figure 6. The weak methane peak in spectrum A results from the reaction of CoCH₂ with residual H₂.²⁵ When H₂ was added to the matrix (spectrum B), both CH₄ and CH₃CoH were

⁽²²⁾ A small amount of dihydrogen may be produced by the cracking of pump oil.

⁽²³⁾ For an earlier example, see: Ozin, G. A.; McCaffrey, J. G. J. Am. Chem. Soc. 1982, 104, 7351.

⁽²⁴⁾ For earlier examples of methane activation by photoexcited metal atoms, see: Billups, W. E.; Konarski, M. M.; Hauge, R. H.; Margrave, J. L. J. Am. Chem. Soc. 1980, 102, 7393. Ozin, G. A.; McIntosh, D. F.; Mitchell, S. A.; Garcia-Prieto, J. J. Am. Chem. Soc. 1981, 103, 1574. Ozin, G. A.; McCaffrey, J. G.; Parnis, J. M. Angew. Chem. 1986, 98, 1076; Angew. Chem., Int. Ed. Engl. 1986, 25, 1072.

Figure 6. Partial FTIR spectra of CH₄, Co(CH₄), and CH₃CoH formed by the cocondensation of Co, CH₂N₂, and H₂ in an argon matrix: (A) without H₂, Co/CH₂N₂/Ar = 1.0/0.9/100; (B) H₂ added during codeposition, Co/CH₂N₂/H₂/Ar = 1.0/0.9/5/100; (C) after 10-min photolysis of B with $\lambda \ge 400$ nm; (D) after 10-min photolysis of B with $360 \ge \lambda \ge 280$ nm; (E) after 10-min photolysis of B with $\lambda \ge 400$ nm; (F) after 10-min photolysis of B with $360 \ge \lambda \ge 280$ nm.

produced (Scheme 1). Photolysis using the visible source (spectrum C) led to extrusion of Co, whereas UV photolysis (spectrum D) gave the reverse process. This sequence is repeated in spectra E and F. These effects are displayed more clearly in Figure 7 with difference spectra and in Figure 8 for a $Co(CD_4)$ complex.

Two structures, 1 and 2, would satisfy the $C_{3\nu}$ symmetry requirement. The adduct 3 would have $C_{2\nu}$ symmetry. An argument in favor of 2 is the facile insertion of the Co atom into one of the C-H bonds of methane to yield CH₃CoH. Complex 1 would probably require extensive reorganization (1 \rightarrow 4) prior to C-H activation. In addition, the adduct with

three C–H bonds complexed to the cobalt would probably be the more stable one.²⁶

Deuterium-Labeled Complexes Co(CH₃D), Co(CH₂D₂), and Co(CD₄). In order to define the structures of these σ -complexes in greater detail, studies using deuterium-labeled compounds were carried out. Fortunately the scheme used to

Figure 7. Partial FTIR spectra of CH₄, Co(CH₄), and CH₃CoH formed by the cocondensation of Co, CH₂N₂, and H₂ in an argon matrix: (A) Co/CH₂N₂/H₂/Ar = 1.0/0.9/5/100; (B) after 10-min photolysis with $\lambda \ge 400$ nm; (C) after 10-min photolysis with $360 \ge \lambda \ge 280$ nm; (D) after 10-min photolysis with $\lambda \ge 400$ nm; (E) after 10-min photolysis with $360 \ge \lambda \ge 280$ nm.

prepare CH₃CoH (Scheme 1) is readily emendable to the synthesis of these complexes. The synthesis of Co(CH₂D₂) is illustrated in Scheme 2 and the absorption frequencies attributed to each of the σ -complexes investigated during this study are shown in Table 4. Curiously, irradiation of this matrix using the $\lambda \ge 400$ nm source led initially to an increase in the absorptions assigned H₂DCCo-D, followed by a gradual decrease. This observation suggests that visible light provides enough energy to diffuse (or to increase the mobility of) the D₂ to a neighboring CoCH₂ to form more H₂DCCo-D. This process competes with the formation of the Co(CH₂D₂) σ -complex. However, as shown in Figure 9, nearly all of the H₂DCCo-D species was converted to the σ -complex after about 1.5 h. HD₂CCo-H was not observed during the photolysis.

When the Co(CH₂D₂) complex from Scheme 2 was subjected to UV photolysis, a mixture of H₂DCCo-H and HD₂CCo-D was formed in about a 2/1 ratio (Scheme 3). Several cycles of visible-ultraviolet irradiations led to product ratios which were consistently 2.0-2.2. The same ratio of products was formed by irradiating a Co/CH₂D₂/Ar matrix through several cycles of visible-UV photolyses.

These results show that reductive elimination of Co from CH₂DCo-D does not give a σ -complex in which the Co maintains an intimate relationship with the C-D bond. Other-

⁽²⁵⁾ Herzberg, G. Molecular Spectra and Molecular Structure II; D. Van Nostrand: New York, 1955. The splitting of this band can be observed up to 38 K. Above this temperature the argon matrix boils away rapidly. This observation mitigates strongly against multiple matrix site perturbation of methane by the cobalt atom as the origin of this effect. It is possible that on lowering the symmetry to $C_{2\nu}$ the degeneracy of this mode is lifted entirely yielding a_1 , b_2 , and b_1 modes. If two of these IR active modes should overlap, then one might observe the doublet observed here.

⁽²⁶⁾ For theoretical calculations see: Anderson, A. B.; Baldwin, S. Organometallics, 1987, 6, 1621.

Figure 8. Partial FTIR spectra of CD₄, Co(CD₄), and CD₃CoD formed by the cocondensation of Co, CD₂N₂, and D₂ in an argon matrix: (A), without D₂, Co/CD₂N₂/Ar = 0.9/0.9/100; (B) D₂ added during codeposition, Co/CD₂N₂/D₂/Ar = 0.9/0.9/5/100; (C) after 10-min photolysis of B with $\lambda \ge 500$ nm; (D) after 10-min photolysis of B with $\lambda > 400$ nm; (E) after 10-min photolysis of B with $360 \ge \lambda \ge 280$ nm; (F) after 10-min photolysis of B with $\lambda > 400$ nm.

Scheme 2

$$C_{0} + CH_{2}N_{2} \xrightarrow{Ar/12} K C_{0}CH_{2} \xrightarrow{D_{2}} CH_{2}DC_{0} \cdot D \xrightarrow{\lambda \ge 400 \text{ nm}} C_{0}(CH_{2}D_{2})$$

Table 4. Absorption Frequencies for $Co(CH_4)$, $Co(CH_2D_2)$, $Co(CD_4)$, and $Co(CH_3D)$

CH4	Co(CH ₄)	vibration mode	CD₄	Co(CD ₄)	vibration mode
1305.8	1303.4 1299.3	CH ₃ d-def	993.6	992.9 989.8	CD ₃ d-def
CH ₂ D ₂	Co(CH ₂ D ₂)	vibration mode	CH ₃ D	Co(CH ₂ D)	vibration mode
3020.2 2981.9	3015.4 2974.0	CH ₂ a-str CH ₂ s-str	3026.5	3019.3	CH ₃ d-str
1431.4	1430.0	CH ₂ scis	1302.4	1303.1 1298.6	CH ₃ s-def
1232.3	1229.3	CH ₂ wag	1155.4	1155.1 1151.8	CH ₃ rock
1028.6	1026.5	CD ₂ scis			

wise, only $H_2DCCo-D$ would have been formed. A weakly bound complex in which the methane is free to rotate on the metal provides the best model.

Analogous routes to the two remaining deuterated σ -complexes Co(CH₃D) and Co(CD₄) are illustrated in Schemes 4 and 5, respectively.

The spontaneous reaction of $CoCH_2$ with HD illustrated in Scheme 4 was found to give both possible regioisomers

Figure 9. A plot of the 1242-cm⁻¹ absorption band of H₂DCCo-D (CoCH₂ + D₂) versus irradiation time using visible light.

Scheme 3

$$C_{0}CH_{2} \xrightarrow{D_{2}} CH_{2}DC_{0}-D \xrightarrow{\lambda \ge 400 \text{ nm}} C_{0}(CH_{2}D_{2}) \xrightarrow{UV} HD_{2}CC_{0}-HD_{2}-HD_{2}CC_{0}-HD_{2}-H$$

Scheme 4

$$C_0 + CH_2N_2 - \frac{Ar/12 K}{-N_2}$$

Scheme 5

$$Co + CD_2N_2 \xrightarrow[-N_2]{Ar/12 \text{ K}} CoCD_2 \xrightarrow[D_2]{D_2} CD_3Co \cdot D \xrightarrow[\lambda \ge 400 \text{ nm}]{VV} Co(CD_4)$$

Table 5. Infrared Absorptions (cm^{-1}) of the Oxidative Addition Products Formed by Photolysis of Cobalt Atoms and CH₄, CH₃D, CH₂D₂, CHD₃, and CD₄

H ₃ CCo-H	HD ₂ CCo-H	H2DCC0-D	H ₂ DCCo-H	H ₃ CCo-D
2982.0				
2942.1				
1722.6	1722.1	1242.2	1722.6	1244.3
1168.5				
573.2		538.4	537.0	
568.9				
530.8	507.9	511.8		531.5
	H ₃ CCo-H 2982.0 2942.1 1722.6 1168.5 573.2 568.9 530.8	H ₃ CCo-H HD ₂ CCo-H 2982.0 2942.1 1722.6 1722.1 1168.5 573.2 568.9 530.8 507.9	H ₃ CCo-H HD ₂ CCo-H H ₂ DCCo-D 2982.0 2942.1 1722.6 1722.1 1242.2 1168.5 573.2 538.4 568.9 530.8 507.9 511.8	H ₃ CCo-H HD ₂ CCo-H H ₂ DCCo-D H ₂ DCCo-H 2982.0 2942.1 1722.6 1722.1 1242.2 1722.6 1168.5 573.2 538.4 537.0 568.9 530.8 507.9 511.8

H₂DCCo-H and H₃CCo-D. Unfortunately, the yield of this reaction was low and furnace light led to the reductive elimination reaction making product ratios difficult to obtain. However, the results from four experiments showed that the H₂DCCo-H/H₃CCo-D ratio was slightly greater than 1 (molar ratios from 1.1 to 1.6). Unfortunately, information relevant to the mechanism of this process is not available. If this reaction is initiated by oxidative addition of HD to CoCH₂, then the regiochemistry of the reduction may reflect the migratory aptitude of the isotopes.

Reactions of Cobalt Atoms with CH₄, CH₃D, CH₂D₂, CHD₃, and CD₄ in Solid Argon. The infrared absorptions of the oxidative addition products obtained by UV photolysis of Co/CH₄, Co/CH₃D, Co/CH₂D₂, Co/CHD₃, and Co/CD₄ matrices are presented in Table 5. The Co(CH₄) σ -complexes cannot be observed in these matrices since the dominance of free methane masks the spectrum of the complex.

The Co-H and Co-D stretching absorptions and force constants for each compounds formed during this study are listed in Table 6. The stretching frequencies of the oxidative addition

Table 6. Frequencies (cm^{-1}) of Co-H and Co-D Stretching Vibrations, and Their Force Constants (mdyn/Å)

reaction	product	str (Co-H)	str (Co-D)	f(Co-H)	f(Co-D)
$\overline{\text{Co} + \text{H}_2}$	HCo-H	1684.5		1.65	
Co + HD	DCo-H	1733.7		1.74	
$C_0 + CH_4$	H₃CCo-H	1722.6		1.72	
$Co + CH_2D_2$	HD ₂ CCo-H	1722.1		1.72	
$Co + CH_3D$	H ₂ DCCo-H	1722.4		1.72	
$CoCH_2 + H_2$	H₃CCo-H	1723.1		1.72	
$C_0CH_2 + D_2$	HD ₂ CCo-H	1722.4		1.72	
$C_0CH_2 + HD$	H ₂ DCCo-H	1722.8		1.72	
$Co + D_2$	DCo-D		1223.4		1.71
Co + HD	HCo-D		1244.6		1.77
$Co + CD_4$	D ₃ CCo-D		1241.0		1.76
$Co + CH_2D_2$	H ₂ DCCo-D		1241.7		1.76
$Co + CH_3D$	H₃CCo-D		1244.3		1.77
$CoCH_2 + D_2$	H ₂ DCCo-D		1242.2		1.76
$CoCH_2 + HD$	H₃CCo-D		1244.6		1.77
$CoCD_2 + D_2$	D ₃ CCo-D		1241.0		1.76

products formed H₂, D₂, and HD are listed for comparison. These reactions are discussed in greater detail in the following section. The force constants, f (in mdyn/Å), of the Co-H and Co-D stretching vibrations were calculated using the diatomic oscillator approximation (Hooke's law). With the exception of the CoH₂, CoD₂, and CoHD, the stretching frequencies for each RCo-H and RCo-D species appear over a narrow range, indicating that the absorptions are not influenced by other vibrations. This finding is further supported by comparing the stretching frequencies and force constants of RCo-H and RCo-D to those of CoH₂, CoD₂, and CoHD. The stretching modes of the RCo-H and RCo-D species behave much like those of CoHD.

The isotope effect determined for the oxidation addition step using a Co/CH₂D₂/Ar matrix formed by cocondensing Co, CH₂N₂, and Ar in a molar ratio of 0.8-0.9/1.0-1.1/100 was 2.2. Similar experiments using CH₃D gave a value of 2.4. Unfortunately, we are unaware of any protocol which would allow us to evaluate isotope effects determined for photochemically induced reactions in frozen argon. However, using conventional arguments one might conclude that the transition state for the oxidative addition would involve a three-center transition state with a significant Co- - -H interaction and a weakened C-H bond.

Reactions of Cobalt Atoms with H₂, D₂, and HD in Solid Argon. Although H₂ cannot be condensed onto the matrix surface at 12 K, molecules of H₂ and cobalt atoms can be trapped in argon cages. In a typical experiment, cobalt atoms, argon, and H₂ were codeposited for 30 min onto the matrix surfaces at 12–15 K. The Co/Ar molar ratio was approximately 0.85/100. No evidence was found for either the spontaneous activation of H₂ or for the formation of a Co(H₂) complex as observed earlier for nickel.²⁷ However, rapid formation of CoH₂

Table 7. Stretching Frequencies (cm^{-1}) for CoH₂, CoD₂, and CoHD in Solid Argon

reaction	product	Co-H	Co-D	abs. ratio of Co-H/Co-D
$Co + H_2$	H-Co-H	1684.5		
$Co + D_2$	D-Co-D		1223.4	
Co + HD	H-Co-D	1733.7	1244.6	1.27

was observed when the matrix was photolyzed using the UV source. As observed earlier for FeH₂, subsequent irradiation of the matrix with visible light led to the reductive elimination of Co from the CoH₂ species.²⁸

$$Co + H_2 \xrightarrow{\frac{280 \text{ nm} < \lambda < 360 \text{ nm}}{\lambda > 400 \text{ nm}}} CoH_2$$

Analogous reactions were observed when D2 and HD were used.

$$Co + D_2 \xrightarrow{\frac{280 \text{ nm} < \lambda < 360 \text{ nm}}{\lambda > 400 \text{ nm}}} CoD_2$$
$$Co + HD \xrightarrow{\frac{280 \text{ nm} < \lambda < 360 \text{ nm}}{1 > 400}} CoHD$$

The stretching frequencies corresponding to each product are listed in Table 7. The CoH₂ and CoD₂ species each exhibit a single absorption corresponding to the Co-H and Co-D stretching vibrations. Since the symmetric stretching vibrations of linear A-B-A molecules are IR inactive, these species must be

nonlinear. Vibrational modes were observed at higher frequencies for CoHD. Since the stretching modes in CoHD do not belong to the same symmetry group, these absorptions were used throughout this work to evaluate the relative molar extinction coefficients of the RCo-H and RCo-D stretching vibrations. The ratio of the Co-H/Co-D absorptions for CoHD was determined by careful peak area measurements and found to be 1.27 (Table 7).

Conclusions

We have found that CoCH₂ can be synthesized by cocondensing Co atoms with CH₂N₂ and argon at 12 K. The CoCH₂ species is accompanied by N₂CoCH₂ and at least two (N₂)_xCoCH₂ complexes. The CoCH₂ reacts with H₂ to give CH₃CoH. This species can also be synthesized by the oxidative addition of cobalt to a C-H bond of methane when Co/CH₄/Ar matrices are photolyzed using a UV source. Photolysis of CH₃CoH using visible light yields a Co(CH₄) σ -complex. Spectroscopic studies show that the σ -complex is a C_{3v} species. Studies using deuterium-labeled σ -complexes have shown that the methane is bound loosely to the Co, probably through a three-bond interaction.

Acknowledgment. We gratefully acknowledge financial support from the National Science Foundation, 3M, and the Robert A. Welch Foundation. Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this research. We also thank Dr. Z. H. Kafafi for many helpful discussions.

JA942697S

⁽²⁷⁾ Park, M. Ph.D. Thesis, (Rice University, Houston, TX, 1988). See also: Ozin, G. A.; McCaffrey, J. G. J. Am. Chem. Soc. 1984, 106, 807.

⁽²⁸⁾ Ozin, G. A.; McCaffrey, J. G. J. Phys. Chem. 1984, 88, 645.